TOPIC 1: WAVES – PHYSICS NOTES FORM FOUR
Introduction to Waves
The Concept of Wave
- transverse waves: Waves which have their direction of motion perpendicular to the vibration of the particles e.g water waves.
- longitudinal waves: Waves have their direction of motion parallel to the direction of the vibration of the particles e.g sound waves.
Consider a slinky wave as an example of a wave. When the slinky is stretched from end to end and is held at rest, it assumes a natural position known as the equilibrium or rest position.

In the case of our slinky wave, the medium through that the wave travels is the slinky coils. In the case of a water wave in the ocean, the medium through which the wave travels is the ocean water. In the case of a sound wave moving from the church choir to the pews, the medium through which the sound wave travels is the air in the room.

The Terms Wave Length, Frequency and Velocity of a Wave

- A transverse wave is a wave in which the particles of the medium are displaced in a direction perpendicular to the direction of energy transport.
- The crest of a wave is the point on the medium that exhibits the maximum amount of positive or upward displacement from the rest position.
- The trough of a wave is the point on the medium that exhibits the maximum amount of negative or downward displacement from the rest position.
- The amplitude of a wave refers to the maximum amount of displacement of a particle on the medium from its rest position. In a sense, the amplitude is the distance from rest to crest. Similarly, the amplitude can be measured from the rest position to the trough position.
- The wavelength of a wave is simply the length of one complete wave cycle. If you were to trace your finger across the wave in the diagram above, you would notice that your finger repeats its path. A wave is a repeating pattern. It repeats itself in a periodic and regular fashion over both time and space. And the length of one such spatial repetition (known as a wave cycle) is the wavelength. The wavelength can be measured as the distance from crest to crest or from trough to trough. In fact, the wavelength of a wave can be measured as the distance from a point on a wave to the corresponding point on the next cycle of the wave.
- A longitudinal wave is a wave in which the particles of the medium are displaced in a direction parallel to the direction of energy transport. A longitudinal wave can be created in a slinky if the slinky is stretched out horizontally and the end coil is vibrated back-and-forth in a horizontal direction.
- A compression is a region in the longitudinal waves where the wave particles are closest to each other. It is a high pressure region and characterized by high concentration of wave particles.
- A rarefaction is the opposite of compression. It is region where wave particles are far apart from each other. it is a low pressure region.
- The frequency, (f) of a wave refers to how often the particles of the medium vibrate when a wave passes through the medium. It the number of waves/oscillations passing a point per second. Given this definition, it is reasonable that the quantity frequency would have units of cycles/second, waves/second, vibrations/second, or something/second. The SI unit for frequency is the Hertz(abbreviated Hz) where 1 Hz is equivalent to 1 cycle/second.
- Period, (T) refers to the time that it takes to do something. When an event occurs repeatedly, then we say that the event is periodic and refer to the time for the event to repeat itself as the period. The period of a wave is the time for a particle on a medium to make one complete cycle (oscillation). Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.
- The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. In the case of a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given interval of time.The SI unit of speed is m/s.
Wave equation


Types of Waves
- Mechanical Waves
- Electromagnetic Waves
Mechanical Waves
Electromagnetic Waves
- Electromagnetic waves travel in a vacuum whereas mechanical waves do not.
- The mechanical waves need a medium like water, air, or anything for it to travel.
- While an electromagnetic wave is called just a disturbance, a mechanical wave is considered a periodic disturbance.
Behaviour of Waves
- Reflection
- Refraction
- Diffraction
- Interference
Reflection
The laws of reflection
- The incident ray, the reflected ray and the normal to the reflection surface at the point of the incidence lie in the same plane.
- The angle which the incident ray makes with the normal is equal to the angle which the reflected ray makes to the same normal.
- The reflected ray and the incident ray are on the opposite sides of the normal.

- It obeys the Law of Reflection.
- The wavelength, λ of the reflected wave is the same as that of the incident waves.
- The frequency,fof the reflected waves is the same as that of the incident waves.
- Therefore the speed, v of the reflected waves is the same as that of the incident waves.
- Specular: Smooth surfaces direct reflected light at opposite angle.
- Diffused: Rough surfaces scatter light in all directions.
- Spread: Some surfaces have a combination texture and smooth surface (varnish overcoat on paper, white label on white bottle).

Refraction


Interference
Constructive Interference

Destructive Interference


The Application of Reflection, Refraction, Diffraction and Interference of Waves in Daily Life
Application of reflection of waves
- The phenomenon of the reflection of sound is used to determine the distance between the two objects, for example depth of seabed, depth of cave or width of a valley. The type of sound used must be ultrasound.
- Sonar (Sound Navigation and Ranging). Sonar is used to detect underwater objects (corals / fishes) or to determine the depth of the water by means of an echo. Sonar equipment emits a high frequency sound signal which is reflected by the object in the water. The reflected sound wave is received by the sonar receiver. The time taken for the echo to return is used to determine the distance of the object below the water surface. Sonar waves of high frequency is used because itpossessesmore energy, high penetration power and can travel further through water.
- Reflection of light waves is used in the design of mirrors.
- Detection of cracks in metals.
- Determination of frequency of A.C’s.
Applications of Refraction
- Refraction has many applications in optics and technology. A lens uses refraction to form an image of an object for many different purposes, such as magnification.
- A prism uses refraction to form a spectrum of colors from an incident beam of light.
- Refraction also plays an important role in the formation of a mirage and other optical illusions.
Applications of interference of waves
- Interference is applied when creating holograms. A hologram is a photograph of an interference pattern which is able to produce a three-dimensional image when suitably illuminated.
- Destructive interference is used in noise reduction systems such as earphones.The system capture sound from the environment and use computer technology to produce a second sound wave,which leads to reduction in the loudness of the noise.
- Concert halls and auditorium are usually designed in such a way to reduce the amount of destructive interference. Usually, the walls and ceiling made in such a way that they absorb rather than reflect sound.
Application of wave diffraction
- Diffraction Grating: A diffraction grating is an optical device that consists of not one but many thousands of apertures. Spectra produced by diffraction gratings are extremely useful in applications from studying the structure of atoms and molecules to investigating the composition of stars.
- X-ray diffraction: X rays are light waves that have very short wavelengths. When they irradiate a solid, crystal material they are diffracted by the atoms in the crystal.x-ray diffraction utilises an instrument called a diffractometer to produce diffraction patterns that can be compared with those of known crystals to determine the structure of new materials.
- Holography: Holography is the science and practice of making holograms. Normally, a hologram is a photographic recording of a light field, rather than of an image formed by a lens, and it is used to display a fully three-dimensional image of the holographed subject, which is seen without the aid of special glasses or other intermediate optics. An illuminating laser beam is diffracted at specific angles, in accordance with Bragg’s law, on the surfaces of the hologram, making it possible for an observer to see a three-dimensional image.
The Behaviour of Waves
Propagation of Waves
The Propagation of Mechanical Waves
- A transverse wave is one that vibrates at 90 degrees to the direction the wave is moving. For example, if you hold a Slinky between two hands and shake it up and down, you’ll get a wave that moves along the Slinky, but the vibrations will still be up and down. Underwater waves are also transverse.

- A longitudinal wave is one in which the vibrations are parallel to the direction the wave is moving. That’s like sending a pulse along the length of a Slinky, pushing it lengthwise. Instead of peaks and troughs, longitudinal waves have compression (areas where the Slinky is bunched together), and rarefaction (areas where the Slinky is spread apart). Another example of a longitudinal wave is a sound wave. Although you can’t see air molecules, if you could, you would notice that sound involves air molecules hitting each other, thereby producing areas with high densities of molecules (compression) and areas with low densities of molecules (rarefaction).

- Last of all, a surface wave is a wave that travels along the boundary between two materials. For example the kind of water wave you most often see–along the top of water–is an example of a surface wave. Surface waves move in similar ways to transverse waves but are a bit more complicated in their behavior.

The Propagation of Electromagnetic Waves
The Relationship between Frequency, Speed and Wavelength of a Wave
- v =speed of a wave
- λ =wavelength
- f = frequency
The Refractive Index of a Medium



Sound Waves
- vibrating solids.
- rapid expansion or compression (explosions and implosions).
- Smooth (laminar) air flow around blunt obstacles may result in the formation of vortices (the plural of vortex) that snap off or shed with a characteristic frequency. This process is called vortex shedding and is another means by which sound waves are formed. This is how a whistle or flute produces sound. Also the aeolian harp effect of singing power lines and fluttering venetian blinds.
The Concept of Audibility
The Perception of Hearing

The Concept of Echo and Reverberation

Reverberation

The Speed of Sound in Air
Musical Sound
The Concept of a Musical Sound
Factors Affecting Loudness, Pitch and Quality of Musical Sound
- Loudnessis the intensity of the sound which is the perceptual property. It is determined by the amplitude of sound wave and the number of auditory nerves activated by sound wave. Amplitude is a physical property determined by how much air pressure in a compression or rarefaction deviates from normal air pressure. The larger the amplitude the louder the sound.
- Pitch is an auditory sensation in which a listener assigns musical tones to relative positions on a musical scale based on the frequency of sound wave vibration. Frequency is an objective, scientific concept, whereas pitch is subjective. Sound waves themselves do not have pitch. It takes a human brain to map the internal quality of pitch.-Pitches are usually quantified as frequencies in cycles per second, or hertz.
- Timbre is the tone quality of sound produced by an instrument. It is referred to as sound quality or sound colour and it is a perceptual property. What makes a particular musical sound different from another, even when they have the same pitch and loudness.
Different Musical Instruments
- Wind Instruments: This class of musical instruments requires you to blow into a specific wind instrument by following an order to ensure that the sound that you desire is produced. The instruments can be expected to work depending on the principles of frequencies, sound waves, acoustics, resonance and harmonics. The pitch of the produced sound when you start blowing the instrument is actually dependent on the length of the air column through which the waves of the sounds vibrate.Some of the most popular wind instruments are piccolo, flute, clarinet, shakuhachi, bassoon, oboe, accordion, English horn, harmonica, saxophone, pianica, bagpie and shehnai.
- Percussion Instruments: These instruments require you to strike the surface of the instrument to generate vibrations to produce your desired note. Percussion instruments can actually be divided into two types. The first type includes tuned instruments that are known to produce a definite pitch or a series of different pitches. Some examples of the tuned percussion instruments include xylophone, vibraphone, marimba, tubular bells and timpani or kettle drum. The second type of percussion instruments is the indefinite pitch. Its examples include triangle, castanets, rattle, cymbals, tambourine, anvil and gong.
- String Instruments: These are composed of those instruments that work based on sound wave vibrations produced by strings. The pitch that can be produced by these instruments is dependent on the length of air column and the type and thickness of strings used.Among the most popular string instruments are guitar, viola, violin, cello, mandolin, harp, double bass and banjo.




The Concept of Resonance as Applied to Sound
Resonance in Closed Ended Pipes
- The air at the closed end of the pipe must be a node (not moving), since the air is not free to move there and must be able to be reflected back.
- There must also be an antinode where the opening is, since that is where there is maximum movement of the air.
- The simplest, smallest wave that I can possibly fit in a closed end pipe is shown in Figure below.
- Notice how even though it has been flipped left-to-right and it looks squished and stretched a bit to fit, this is still ¼ of a wavelength.
- Since this is the smallest stable piece of a wave I can fit in this pipe, this is the Fundamental, or 1st Harmonic.

- “L” is the length of the tube in meters. On it’s own this formula really doesn’t help us much.
- Instead, we have to solve this formula for λ and then combine it with the formula v=fλ to get a more useful formula:

- I know this name might seem a little confusing (I’m the first to agree with you!) but because of the actual notes produced and the way the waves fit in, musicians refer to the next step up in a closed end pipe instrument as the 3rd harmonic… there is no such thing as a 2nd harmonic for closed end pipes.
- In fact, all of the harmonics in closed end pipes are going to be odd numbers.





- The fundamental (first harmonic) for an open end pipe needs to be an antinode at both ends, since the air can move at both ends.
- That’s why the smallest wave we can fit in is shown in Figure 11.
- This looks different than the ½ wavelength that I showed you in Figure 3, but it is still half of a full wavelength.
- That means the length of the tube and frequency formulas are…L = ½ λ

- Yep, open end pipes have a 2nd harmonic… they can have any number harmonic they want, odd or even.
- Again, it kind of looks weird, but trace it out and you’ll see that there is exactly one wavelength here.
- The length and frequency formulas are…L = 2/2 λ, f= 2v/2L
Electro Magnetic Spectrum
The Concept of ElectroMagnetic Spectrum
- It is continuous i.e each band merges into the next and there are no gaps in the frequencies. The different kinds of radiation gradually change from one to another as their properties also gradually change.
- In some case, there is an overlap in the range of wavelength. This is because sometimes the name given to the wave(radiation) is determined by the source and not the wavelength(or frequency) for example x-rays and γ -rays.
The Main Bands of the Electro Magnetic Spectrum
- alternating electric currents flowing in antennae
- oscillators
- planets, comets, stars and galaxies
- Are produced by oscillation of charges in special antennae mounted on dishes.
- Magnetrons.
Application of ElectroMagnetic Wave in daily life
- Fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications.
- Astronomers use large radio telescopes to collect and study radio waves from distant stars and galaxies. This helps them to determine composition, structure and motion of the celestial bodies.
- In cooking
- Radar systems
- Long distance communication
- Medical application the same as x-rays
- In agriculture
- X-ray photography
- Diagnosis and treatment of cancer









































Leave a Reply