Radical Revision Questions Form Two Basic Mathematics

Radical Revision Questions Form Two Basic Mathematics

Statistics Revision Questions Form Three Basic Mathematics, Statistics Revision Questions Form Two Basic Mathematics, Pythagoras Theorem and Trigonometry Revision Questions Form Two Basic Mathematics, Geometrical Transformation Revision Questions Form Two Basic Mathematics, Congruence and Similarity Revision Questions Form Two Basic Mathematics, Quadratic Equation Revision Questions Form Two Basic Mathematics, Logarithms Revision Questions Form Two Basic Mathematics, Algebra Revision Questions Form Two Basic Mathematics, Radical Revision Questions Form Two Basic Mathematics, Exponents Revision Questions Form Two Basic Mathematics

Radical Revision Questions Form Two Basic Mathematics

Radicals are opposite of exponents. For example when we raise 2 by 2 we get 4 but taking square root of 4 we get 2. The same way we can raise the number using any number is the same way we can have the root of that number. For example, square root, Cube root, fourth root, fifth roots and so on.

We can simplify radicals if the number has factor with root, but if the number has factors with no root then it is in its simplest form. In this chapter we are going to learn how to find the roots of the numbers and how to simplify radicals.

When a number is expressed as a product of equal factors, each of the factors is called the root of that number.

For example,25 = 5× 5;so, 5 is a square root of 25: 64 = 8× 8; 8 is a square root of 64: 216 = 6 ×6 ×6, 6 is a cube root of 216: 81 = 3 × 3 ×3 ×3,3 is a fourth root of 81: 1024 = 4 ×4 ×4 ×4 ×4, 4 is a fifth root of 1024.

Therefore, the nth root of a number is one of the n equal factors of that number. The symbol for nth root isn√ where √ is called a radical and n is the index (indicates the root you have to find).

If the index is 2, the symbol represents square root of a number and it is simply written as √ without the index 2.n√pis expressed in power form as,

040523 1239 TOPIC1EXPON44

Radical Revision Questions Form Two Basic Mathematics


DOWNLOAD PDF

Leave a Comment

You cannot copy content of this page. Contact Admin